Shri Shankaracharya Institute of Professional Management \& Technology
Department of Electronics \& Telecommunication
Class Test - I Session- Jan. - June, 2023 Month- April
Sem- $4^{\text {th }}$ Subject- Analog Circuits- B028412(028)
Time Allowed: 2 hrs Max Marks: 40
Note: - Attempt any 5 question. All questions carry equal marks.

Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Explain (i) Diffusion Current (ii) Drift Current	[8]	Understanding	CO1
2.	Draw and explain the working of transistor and its three biasing condition.	[8]	Understanding	CO 2
3.	Explain conductivity of extrinsic Semiconductor.	[8]	Understanding	CO1
4.	Explain biasing in PN junction diode.	[8]	Understanding	CO1
5.	Draw and explain different Clamper Circuits.	[8]	Understanding	CO2
6.	Draw and explain different Clipper Circuits.	[8]	Understanding	$\mathrm{CO1}$

Shri Shankaracharya Institute of Professional Management \& Technology
Department of Electronics and Telecommunication Engineering
Class Test - I Session- Jan - June, 2023 Month- April
Sem- ET\&T $4^{\text {th }}$ Subject- Analog Communication - B028411(28)
Time Allowed: 2 hrs

Note: -	trempt any 5 questions. All questions carry equal ma	$\underset{\mathrm{s}}{\text { Mark }}$	Levels of Bloom's taxonomy	CO
Q.	Questions			
No.	dulation. What is the need for modulation		Understandin	CO
1		[8]	g	1
			Understandin	CO
2	State and Prove Parseval's theorem for Energy signal	[8]	g	1
			Understandin	CO
3	Explain the elements of Communication System with the help of a block diagram.	[8]	g	CO
4	Determine the fourier transform of the Gaussian pulse $\mathrm{x}(\mathrm{t})=e^{-b^{2} t^{2}}$	[8]	Apply	1
5	a) What are the essential conditions for Fourier transform. b) State and Prove Time Shifting and Frequency shifting property of Fourier transform.	[8]	Apply	CO
		[8]	Apply	

Shri Shankaracharya Institute of Professional Management \& Technology Department of Electronics and Telecommunication Engineering

Class Test - I Session- Jan - June, 2023 Month- April
Sem- ET\&T $4^{\text {th }}$ Subject- Analog Communication - B028411(28)
Time Allowed: 2 hrs

	Attempt any 5 questions. All questions carry equ		Levels of	
$\begin{aligned} & \text { Q. } \\ & \text { NO. } \end{aligned}$	Questions	Mark	Bloom's taxonomy Understandin	cos CO
1	Define Modulation. What is the need for modulation.	[8]	g Understandin	CO
2	State and Prove Parseval's theorem for Energy signal	[8]	g	1
3	Explain the elements of Communication System with the help of a block diagram.	[8]	Understandin g	CO
4	Determine the fourier transform of the Gaussian pulse $\mathrm{x}(\mathrm{t})=e^{-b^{2} t^{2}}$	[8]	Apply	1
5	a) What are the essential conditions for Fourier transform. b) State and Prove Time Shifting and Frequency shifting property of Fourier transform.	[8]	Apply	CO
6	Determine the Fourier transform of a triangular waveform	[8]	Apply	1

Shri Shankaracharya Institute of Professional Management \& Technology Department of Electronics and Telecommunication Engineering

SSIPMT
RAIPUR
Class Test - I Session- Jan. - June, 2023 Month- April
Sem- ET\&T 4 ${ }^{\text {th }}$ Subject- EMF - B028413(028)
Time Allowed: 2 hrs Max Marks: 40
Note: -
Part 1 carry 2 marks for each question, part 2 carry 8 marks for each question. Attempt 4 questions from each part.

Part	Questions	Marks	Levels of Bloom's taxonomy	COs
\mathbf{N}				
\mathbf{O}.				

PART-1

1. A Scalar function, V is given by $\mathrm{V}=\mathrm{xyz}^{2}$, find the gradient of V .
2. If a vector, $\vec{B}=4 x y^{2} \hat{a} x+2 y^{3} \hat{a} y+x y z \hat{a} z$. find divegence of B.
3. Given a vector, $\vec{A}=3 x \hat{a}_{x}+y \hat{a}_{y}+5 z \hat{a}_{z}$. Find the curt of \vec{A}.
4. If the scalar potential is given by $\mathrm{V}=x^{2}-y^{2}-z^{2}$ volts. Find the laplacian of V .
5. If a vector $\vec{A}=4 \hat{a}_{x}+2 \hat{a}_{y}+\hat{a}_{z}$ express it in cylindrical coordinater.

PART-2

6.	State \& Explain Guass's Divergence Theorem.	8	Understanding Apply	CO1

Shri Shankaracharya Institute of Professional Management \& Technology

Department of Electronics and Telecommunication Engineering

RAIPUR

Class Test - I Session- Feb- June, 2023 Month- April
Sem- ET\&T $4^{\text {th }}$ Subject- Probability Theory and Stochastic Theory - B028415(028)
Time Allowed: 2 hrs Max Marks: 40
Note: - Attempt any 5 question. All questions carry equal marks.

$\begin{gathered} \text { Q. } \\ \text { NO. } \end{gathered}$	Questions			
1.	In a box there are 100 resistors having resistance and tole in table. Let a resistor be selected from the box and assum has the same likelihood of being choosen.Define three eve a 47Ω ", B as "draw a resistor with 5% toleran" and C as resistor". Find joint and conditional probabilities.			
	Resistance		leran	
	$\boldsymbol{\Omega}$	5\%	10\%	Total
	22	10	14	24
	47	28	16	44
	100	24	8	32
	Total	62	38	100

A pair of fair dice are thrown in a gambling problem. Person A wins if the sum of numbers showing up is six or less and one of the dice shows four. Person B wins if the sum five and more and one of the dice shows
four. Find:
[8] Applying
CO 1
(a) The probability that A wins,
(b) The probability that B wins, and
(c) The probability that both A and B win.

A manufacturing plat makes radios that each contain an integrated circuit(IC) supplied by three sources A, B and C. The probability that the IC ina radio came from one of the sources is $1 / 3$, the same for all sources. ICs are known to be defective with probabilities $0.001,0.003$ and 0.003 for sources A, B and C respectively.
(a) What is the probability any iven radio will contain a defective IC?
(b) If a radio contains a defective IC, find the probability it came from source A. Repeat for sources B and C.

Define terms below(explain with formula) :

4.

(a) Sample space
(b) Events
(c) Baye's Theorem
(d) Joint Probabilty (d)
Remembe
CO1 Conditional Probability

Spacecraft are expected to land in a prescribed recovery zone 80% of the time. Over a period of time, six spacecraft land.
(a) Find the probability that none land in the prescribed zone.
(b) Find the probability that atleast one will land in the prescribed zone.
(c) The landing program is called successful if is 0.9 or more that three or more out of six spacecraft will land in the prescribed zone.

A student is known to arrive late for a class 50% of the time. If the class meets five times eac week find:
6.
(a) the probability the students is late for atleast tree classes in a given week, and
(b) the probability the students will not be late at all during a given week.
An elementary binary communication system consists of a transmitter that sends one of two possible symbols(a 1 or a 0) over a channel to a receiver. The channel occasionally causes errors to occure so that a
7. shows up at the receiver as a 0 and vice versa.The probabilities that symbols 1 and 0 are selected for transmission are assumed to be 0.6 and and 0.4. Find the probabilities for system error and probabilities of correct system transmissionof symbols.
$21109 / 23 / E T / P+=P /=-I / 4$ th

